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Abstract. The effect of water thickness on the mean curvature modulusκ of an inverted bilayer
has been investigated. Our system is a lamellar phase made up of a series of water films each
surrounded by two ionic surfactant monolayers and separated with hydrophobic solvent. The
elastic constantκ has been estimated using the excess-area method and it is shown to decrease
when the thickness of the water layer increases. This result cannot be interpreted in terms
of electrostatic effects—anincreaseof κ is expected instead—but may arise from a coupling
between short-range surfactant interactions and curvature strains.

The elastic bending constantκ of membranes is a key parameter in the understanding
of the stability and thermodynamic properties of surfactant phases made up of flexible
membranes [1, 2, 3, 4]. Many systems such as microemulsions [1, 5], dilute lamellar
phases [6, 7], sponge [8, 9] and vesicle phases [10, 11] can indeed be considered as phases
of fluctuating surfaces. Their thermodynamic properties can be described in terms of a
competition between curvature energy and entropy coming from the fluctuations of the
film. Several microscopic parameters are supposed to control the absolute value of the
elastic constantκ, among which the bilayer thickness is one of the most easily accessible
experimentally [12]. Moreover a number of theoretical predictions have emphasized the
role of the electrostatic contribution in relation toκ [13–18]. According to the relative
values of three characteristic lengths (Debye–Hückel, Gouy–Chapman and water thickness)
several regimes can be described (see [17]). One of the most interesting regimes is the
so-called Gouy–Chapman regime where the contribution of the electrostatic interactions to
the bending modulus is alinearly increasingfunction of the water thickness [17, 18]. This
regime is expected to be found when no electrolyte is added to the polar solvent of the
ionic surfactant molecules [18]. To our knowledge, no experimental measurement has been
made aiming at checking this theoretical prediction.

In order to investigate the eventual effect of electrostatic interactions on the bending
elastic constant, we have studied aninverted bilayer system: two (charged) surfactant
films surround a water layer without any added electrolyte. There is a weakly screened
electrostatic interaction between two adjacent surfactant films through the water layer they
share, but no long-range electrostatic interaction between different bilayers since they are
globally charge neutral. We have worked with the lamellar (smectic A) phase obtained
in the quaternary sodium dodecylsulphate (SDS)–pentanol–water–dodecane system—see
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Figure 1. A schematic representation of the inverted lamellar phase: a water film of thicknessδw

is surrounded by two surfactant films. The—undulating—membranes (their geometric thickness
is δ) are separated with dodecane. The repeat distance of the smectic A liquid crystal isd.

figure 1 for a geometrical schematic representation of the structure. The surfactant film
is a mixture of SDS and pentanol. A small amount (about 8%) of pentanol also gets
dissolved in dodecane, and a negligible amount (less than about 1.5%) in water. The
complete phase diagram may be found elsewhere [19, 20]. In this system the lamellar
phase can be significantly swollen with dodecane for a wide range of water-to-SDS ratios
(W/S, in weight, varying typically from 1 to 4). Undulation interactions were shown to
be responsible for the relatively high dilutions observed [7], indicating that the inverted
bilayers are rather flexible objects. Varying the water content of the bilayers, we induce a
significant variation of the water thicknessδw and therefore of the electrostatic interaction
between the surfactant films. On theoretical grounds [17] we expect in our system the
following electrostatic contributionδκe to the mean curvature modulus:

δκe ∝ δw

LB

kBT (1)

where LB is the Bjerrum length of the solvent, i.e. about 7Å at room temperature for
pure water. Note that the prefactor in equation (1) is not known numerically in the planar
geometry of the lamellar phase. However, a rather small value, namely 1/π −π/12 ≈ 0.06,
was obtained in the simple case of cylindrically wrapped films [17].

Different methods have been used in the literature to gain access to the value ofκ.
The most direct methods are either local ones based on the measure of the amplitude of
the membrane normal fluctuations [21, 22] or more collective ones, analysing the long-
wavelength modes of the smectic phase [23]. A simpler method, while more indirect, has
been suggested and is related to theexcess areaarising in the membrane crumpling. It
consists in measuring precisely the position of the first-order Bragg peak of the lamellar
samples along a dilution line. A logarithmic deviation from the ideal swelling law is
expected in lamellar systems stabilized by undulation forces [24] and indeed experimentally
observed with flexible enough membranes [25, 26, 27]. The best estimate for this effect
gives—for small enough membrane volume fractionsφ—the following swelling law for the
smectic periodd [28]:

d = 1

φ
(A − B logφ) (2)

where the constantsA andB are expressed in terms of the membrane geometric thickness
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δ and of the elastic constantκ by

A = δ

(
1 + kBT

4πκ
log

[√
32κ

3πkBT

δ

a

])
(3)

and

B = δ
kBT

4πκ
. (4)

The molecular lengtha in equation (3) corresponds here to the short-wavelength cut-off of
the in-plane fluctuations. In what follows we takea ≈ √

6 = 5 Å (6 being the area per
polar head in the surfactant layers).

We have used the above-outlined excess-area method to determine the evolution ofκ

as a function of the bilayer water content. Peak positions were measured with an in-house
high-resolution x-ray spectrometer. Both the monochromator and the analyser are triple-
bounce germanium channel-cut crystals, leading to a narrow in-plane resolution function
(half-width at half-maximum of the order of 0.002 Å−1).

In the data analysis we assume that, for a given dilution line (i.e. for a given water-
to-SDS ratioW/S), the geometric membrane thicknessδ is equal to the smectic period
of the dodecane-freesample. In order to precisely estimateδ, we measure as a function
of the water content the first-order Bragg peak positionq0 of such samples, definingδ
as 2π/q0. The lamellar phase of this SDS–water–pentanol ternary system is stabilized
by electrostatic interactions and consequently does not exhibit logarithmic corrections. As
previously shown [29], the swelling law relating the smectic periodδ of this ternary system
to thewater volume fraction is

δ = 2δS

1 − φw

(5)

with δS the surfactant film thickness. Since we are working mainly with rather concentrated
ternary systems (φw > 0.30), we ignore the small amount of pentanol dissolved in water
(we checked that this has no consequences on the results) and findδS = 10.1 Å.

Table 1.

κ/kBT κ/kBT

δ (Å) dφ (Å) (from equation (4)) (from equation (6))

32.0 32.2− logφ 2.56 2.39
32.6 32.4−2.27 logφ 1.14 0.95
35.7 32.8−3.3 logφ 0.85 0.63
38.7 35.6−7.9 logφ 0.39 0.24
39.1 37.8−11.05 logφ 0.28 0.17
40.2 37.0−10 logφ 0.31 0.19
46.0 44.6−11.4 logφ 0.32 0.19

Seven dilution lines were followed, adding dodecane and pentanol to the initially ternary
systems. The inverted bilayer thicknessesδ vary from 32Å to 46Å, corresponding to a water
layer thicknessδw (δw = δ−2δS) in the range 12–26̊A. The smectic repeat distanced along
a given dilution line increases typically from 50 to 200Å. The dilution lines were chosen
to be straight lines located exactly in the middle of the smectic phase domains [19, 20].
Figure 2 shows the evolution ofd for four dilution lines (corresponding toδ = 32, 32.6,
35.7 and 39Å respectively) as a function of the reciprocal of the bilayer volume fraction
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Figure 2. The evolution of the repeat distanced (from small-angle x-ray scattering) as a function
of 1/φ (φ is the membrane volume fraction). The solid lines correspond to ideal swelling laws:
d = δ/φ with δ taken from x-ray data on dodecane-free ternary samples (see the text). For
the smallest water thickness (open squares) the data follow basically an ideal swelling law; in
contrast, a large deviation obtains at large water content (filled squares).

Figure 3. A semi-logarithmic plot of the deviation from ideal swelling (dφ) as a function of the
membrane volume fractionφ. The linear behaviour observed is consistent with equation (2).

φ. Solid lines in figure 2 correspond to ideal swelling laws (d = δ/φ), using the previously
determined values ofδ. It is readily observed that for the smallest bilayer thicknessesδ the
deviation from the ideal swelling is rather small. On the other hand, a large deviation (more
than 20%) is seen at largerδ. We present in figure 3 a different representation of the same
data—dφ as a function of logφ—emphasizing thedeviationfrom ideal swelling. The linear
behaviour observed in this semi-logarithmic plot is attributed to membrane crumpling. We
easily estimate the parametersA andB of equation (2) from a fit; see table 1. In principle,
we can extract from the coefficientsA andB two independent values for the elastic constant
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κ, with the parametersδ and a given. However, we think that owing to the uncertainties
inherent to any acceptable definition of the in-plane cut-offa, the slopeB (equation (4))
gives a priori a more reliable estimate forκ. It should be noted that this estimate still
depends on the value chosen for the membrane thickness. Another estimate ofκ, which is
not sensitive to the choice ofδ, results from the following combination ofA andB:

A

B
− log

[√
32

3π

4πB

a

]
= 4πκ

kBT
+ 3

2
log

κ

kBT
(6)

with the membrane thicknessδ eliminated in equation (3) with the help of equation (4). The
values forκ arising from solving equation (4) or equation (6) are given in table 1. The two
methods yield rather similar values for the mostrigid membranes and differ increasingly
with more flexible bilayers. The trends arequalitatively the same, however: there is a
significant decrease ofκ when the bilayer thickness increases.

Figure 4. The evolution of the bending constantκ as a function of the water thicknessδw . The
solid line is a guide to the eyes rather than an explicit fit.

The variation of the membrane mean curvature modulusκ (using the first estimate) as
a function of the water layer thicknessδw is displayed in figure 4: there is first a sharp
decrease ofκ at small thicknesses, followed by a kind of plateau around 0.3kBT at larger
δw. The electrostatic contribution should lead, according to equation (1), to alinear increase
of κ with δw which is obviouslynot observed in our data. This suggests that—in our case—
the electrostatics is, unexpectedly, not relevant for controlling bilayer elasticity. In order to
understand the functional dependence ofκ, it seems therefore reasonable to look for non-
electrostatic phenomena. Taking into account the relatively short distances below which
the increase inκ starts to be noticeable (below 15̊A), one may invoke a contribution to
the bending elasticity originating in a coupling between short-range surfactant interactions
and curvature strains. Indeed, an exponential repulsion between polar heads has been
measured in water for distances as small as the ones considered here [30]. This so-called
‘hydration force’ could explain the short-range nature of the effect. The physical origin of
this interaction remains, however, the subject of debate [31, 32]. Our results will probably
not help in solving this interesting problem. To our knowledge, there has been no calculation
of the consequences for the bending constant in any of the models for ‘hydration forces’.
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Beside the puzzle of the origin of the large variation ofκ at small membrane thicknesses,
it should again be emphasized that there are no observable electrostatic contributions. This
may be considered as an indication of the magnitude of the (poorly known) numerical
prefactor in equation (1). Assuming the prefactor to be equal to 1 would lead to an
electrostatic contribution of the order of 0.14kBT Å−1, i.e. a global variation for the
bending rigidity1κ = 2kBT , clearly too large to be compatible with our data. On the other
hand, the value 1/π − π/12 calculated on the basis of a cylindrical geometry in [17] leads
to 1κ = 0.1kBT , undetectable with our present experimental precision. More experiments
and theoretical consideration are undoubtedly still needed to help in clarifying the relative
roles of electrostatics and other interactions in bilayer curvature elasticity.
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